Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 5 de 5
Фильтр
1.
Euro Surveill ; 27(43)2022 10.
Статья в английский | MEDLINE | ID: covidwho-2154580

Реферат

BackgroundTracking person-to-person SARS-CoV-2 transmission in the population is important to understand the epidemiology of community transmission and may contribute to the containment of SARS-CoV-2. Neither contact tracing nor genomic surveillance alone, however, are typically sufficient to achieve this objective.AimWe demonstrate the successful application of the integrated genomic surveillance (IGS) system of the German city of Düsseldorf for tracing SARS-CoV-2 transmission chains in the population as well as detecting and investigating travel-associated SARS-CoV-2 infection clusters.MethodsGenomic surveillance, phylogenetic analysis, and structured case interviews were integrated to elucidate two genetically defined clusters of SARS-CoV-2 isolates detected by IGS in Düsseldorf in July 2021.ResultsCluster 1 (n = 67 Düsseldorf cases) and Cluster 2 (n = 36) were detected in a surveillance dataset of 518 high-quality SARS-CoV-2 genomes from Düsseldorf (53% of total cases, sampled mid-June to July 2021). Cluster 1 could be traced back to a complex pattern of transmission in nightlife venues following a putative importation by a SARS-CoV-2-infected return traveller (IP) in late June; 28 SARS-CoV-2 cases could be epidemiologically directly linked to IP. Supported by viral genome data from Spain, Cluster 2 was shown to represent multiple independent introduction events of a viral strain circulating in Catalonia and other European countries, followed by diffuse community transmission in Düsseldorf.ConclusionIGS enabled high-resolution tracing of SARS-CoV-2 transmission in an internationally connected city during community transmission and provided infection chain-level evidence of the downstream propagation of travel-imported SARS-CoV-2 cases.


Тема - темы
COVID-19 , Communicable Diseases, Imported , Humans , SARS-CoV-2/genetics , Travel , Communicable Diseases, Imported/epidemiology , COVID-19/epidemiology , Phylogeny , Contact Tracing , Germany/epidemiology , Genomics
2.
Clin Infect Dis ; 74(6): 1039-1046, 2022 03 23.
Статья в английский | MEDLINE | ID: covidwho-1699921

Реферат

BACKGROUND: Tracing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission chains is still a major challenge for public health authorities, when incidental contacts are not recalled or are not perceived as potential risk contacts. Viral sequencing can address key questions about SARS-CoV-2 evolution and may support reconstruction of viral transmission networks by integration of molecular epidemiology into classical contact tracing. METHODS: In collaboration with local public health authorities, we set up an integrated system of genomic surveillance in an urban setting, combining a) viral surveillance sequencing, b) genetically based identification of infection clusters in the population, c) integration of public health authority contact tracing data, and d) a user-friendly dashboard application as a central data analysis platform. RESULTS: Application of the integrated system from August to December 2020 enabled a characterization of viral population structure, analysis of 4 outbreaks at a maximum care hospital, and genetically based identification of 5 putative population infection clusters, all of which were confirmed by contact tracing. The system contributed to the development of improved hospital infection control and prevention measures and enabled the identification of previously unrecognized transmission chains, involving a martial arts gym and establishing a link between the hospital to the local population. CONCLUSIONS: Integrated systems of genomic surveillance could contribute to the monitoring and, potentially, improved management of SARS-CoV-2 transmission in the population.


Тема - темы
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Contact Tracing , Disease Outbreaks/prevention & control , Genomics , Humans , SARS-CoV-2/genetics
3.
Front Immunol ; 12: 747143, 2021.
Статья в английский | MEDLINE | ID: covidwho-1497080

Реферат

Regulatory T cells (Tregs) are the major determinant of peripheral immune tolerance. Many Treg subsets have been described, however thymus-derived and peripherally induced Tregs remain the most important subpopulations. In multiple sclerosis, a prototypical autoimmune disorder of the central nervous system, Treg dysfunction is a pathogenic hallmark. In contrast, induction of Treg proliferation and enhancement of their function are central immune evasion mechanisms of infectious pathogens. In accordance, Treg expansion is compartmentalized to tissues with high viral replication and prolonged in chronic infections. In friend retrovirus infection, Treg expansion is mainly based on excessive interleukin-2 production by infected effector T cells. Moreover, pathogens seem also to enhance Treg functions as shown in human immunodeficiency virus infection, where Tregs express higher levels of effector molecules such as cytotoxic T-lymphocyte-associated protein 4, CD39 and cAMP and show increased suppressive capacity. Thus, insights into the molecular mechanisms by which intracellular pathogens alter Treg functions might aid to find new therapeutic approaches to target central nervous system autoimmunity. In this review, we summarize the current knowledge of the role of pathogens for Treg function in the context of autoimmune neuroinflammation. We discuss the mechanistic implications for future therapies and provide an outlook for new research directions.


Тема - темы
Autoimmune Diseases/immunology , Autoimmune Diseases/microbiology , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/microbiology , T-Lymphocytes, Regulatory/immunology , Animals , Humans , Persistent Infection/immunology
4.
Cell Death Differ ; 27(12): 3209-3225, 2020 12.
Статья в английский | MEDLINE | ID: covidwho-841179

Реферат

COVID-19 is caused by SARS-CoV-2 infection and characterized by diverse clinical symptoms. Type I interferon (IFN-I) production is impaired and severe cases lead to ARDS and widespread coagulopathy. We propose that COVID-19 pathophysiology is initiated by SARS-CoV-2 gene products, the NSP1 and ORF6 proteins, leading to a catastrophic cascade of failures. These viral components induce signal transducer and activator of transcription 1 (STAT1) dysfunction and compensatory hyperactivation of STAT3. In SARS-CoV-2-infected cells, a positive feedback loop established between STAT3 and plasminogen activator inhibitor-1 (PAI-1) may lead to an escalating cycle of activation in common with the interdependent signaling networks affected in COVID-19. Specifically, PAI-1 upregulation leads to coagulopathy characterized by intravascular thrombi. Overproduced PAI-1 binds to TLR4 on macrophages, inducing the secretion of proinflammatory cytokines and chemokines. The recruitment and subsequent activation of innate immune cells within an infected lung drives the destruction of lung architecture, which leads to the infection of regional endothelial cells and produces a hypoxic environment that further stimulates PAI-1 production. Acute lung injury also activates EGFR and leads to the phosphorylation of STAT3. COVID-19 patients' autopsies frequently exhibit diffuse alveolar damage (DAD) and increased hyaluronan (HA) production which also leads to higher levels of PAI-1. COVID-19 risk factors are consistent with this scenario, as PAI-1 levels are increased in hypertension, obesity, diabetes, cardiovascular diseases, and old age. We discuss the possibility of using various approved drugs, or drugs currently in clinical development, to treat COVID-19. This perspective suggests to enhance STAT1 activity and/or inhibit STAT3 functions for COVID-19 treatment. This might derail the escalating STAT3/PAI-1 cycle central to COVID-19.


Тема - темы
COVID-19/pathology , STAT Transcription Factors/metabolism , Signal Transduction/physiology , COVID-19/metabolism , COVID-19/virology , Chemokines/metabolism , Cytokines/metabolism , ErbB Receptors/metabolism , Humans , Interferon Type I/metabolism , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , STAT Transcription Factors/chemistry , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism
5.
Euro Surveill ; 25(22)2020 Jun.
Статья в английский | MEDLINE | ID: covidwho-525969

Реферат

We whole-genome sequenced 55 SARS-CoV-2 isolates from Germany to investigate SARS-CoV-2 outbreaks in 2020 in the Heinsberg district and Düsseldorf. While the genetic structure of the Heinsberg outbreak indicates a clonal origin, reflecting superspreading dynamics from mid-February during the carnival season, distinct viral strains were circulating in Düsseldorf in March, reflecting the city's international links. Limited detection of Heinsberg strains in the Düsseldorf area despite geographical proximity may reflect efficient containment and contact-tracing efforts.


Тема - темы
Betacoronavirus/genetics , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Genome, Viral/genetics , Pandemics , Pneumonia, Viral/diagnosis , Whole Genome Sequencing/methods , Betacoronavirus/isolation & purification , Betacoronavirus/pathogenicity , COVID-19 , COVID-19 Testing , Coronavirus Infections/epidemiology , Disease Outbreaks , Germany/epidemiology , Humans , Pneumonia, Viral/epidemiology , RNA-Directed DNA Polymerase , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2
Критерии поиска